

INSIGHT IN MIRNOME OF SEVERE MULTIPLE SCLEROSIS: PILOT STUDY OF DISTINCTIVE RELAPSE-ONSET MS PHENOTYPES

Aleksandra Stankovic¹, Ivan Jovanovic¹, Evica Dincic² Slobodan Vojinovic^{3,4}, Ljiljana Stojkovic¹, Ana Djordjevic¹, Jovana Kuveljic¹, Maja Zivkovic¹

¹"Vinča" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Mike Petrovića Alasa 12-14, Belgrade, Serbia ² Military Medical Academy, Clinic for Neurology, Crnotravska 17, Belgrade, Serbia, ³Clinic of Neurology, Clinical Center Nis, dr Zoran Djindjic Boulevard, Nis, 4Medical Faculty, University of Nis, Nis, Serbia

INTRODUCTION

background and biomarkers of Molecular highly heterogonous and hardly predictable disease progression among relapse-onset MS patients are of high research interest.

In the current pilot study, we aimed to employ nextgeneration sequencing to investigate the expression of whole small non-coding microRNAs (miRNome) in two groups of MS patients with highly distinctive progression phenotype: one with fast progressing, severely disabling course vs. mild course of MS, longitudinally followed >10 years.

METHODS

Sample: Mild phenotype MS (n=4 patients), progressive phenotype MS (n=5 patients)

miRNome-seq: PBMC total RNA was processed using TakaraBio SMARTer smRNA-Seq Kit and sequenced on Illumina iSeq100 instrument.

Differentially expressed miRNA (DEmiRNA) analysis:

Pre-processing of raw sequencing data, quality control annotation mapping and differential and expression analysis was performed using sRNAtoolbox pipeline. Results of DEseq2 algorithm are presented.

Functional interpretation of DEmiRNA target genes: DIANA-miRPathv3.0 based on Tarbase v7.0 as a resource of miRNA: gene interactions was employed.

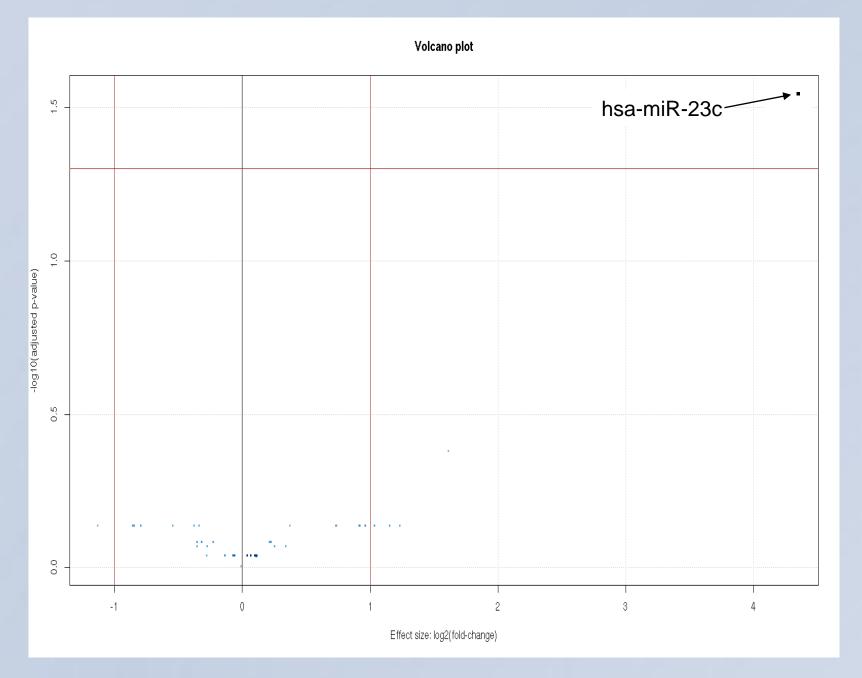


Fig 1. Volcano plot of DEmiRNAs

RESULTS

DEmiRNA analysis

Achieved read depth was approximately 1 million raw reads/sample

After genome alignment and miRbase v22 annotation up to **92 mature miRNAs/sample** were detected.

Differential expression analysis identified the significant upregulation of hsa-miR-23c (log2FC=4.29, Padj= 0.03) in progressive phenotype.

Top significantly enriched KEGG pathways in hsa-miR-23c targets

p-value	#genes
4.85E-06	3
2.44E-05	10
0.000131	3
0.00073	10
0.002962	10
0.011572	3
0.015224	1
0.043198	8
	4.85E-06 2.44E-05 0.000131 0.00073 0.002962

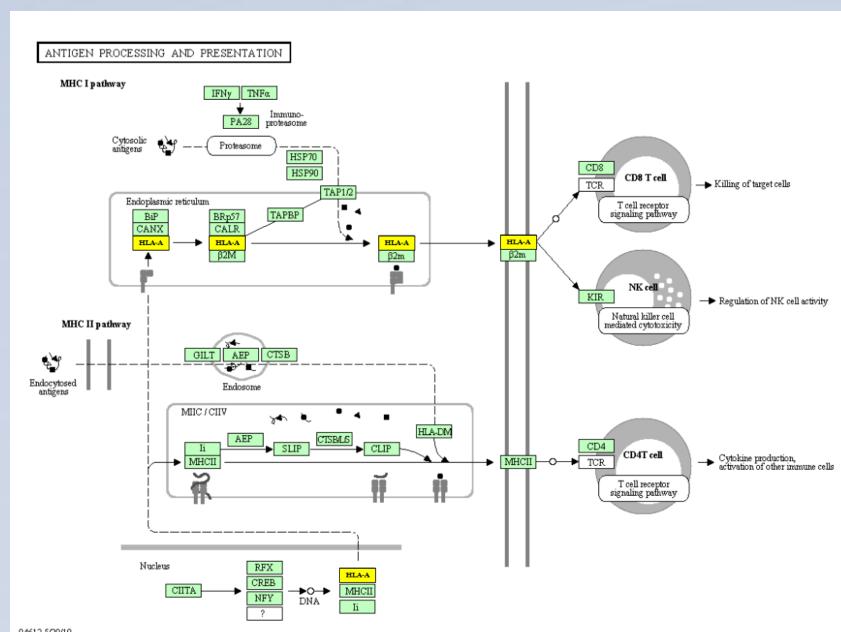


Fig 2. The KEGG pathway enriched in hsa-miR-23c target genes with the lowest enrichment p-value

CONCLUSIONS

In conclusion, this pilot study indicates phenotype-related differences in expression of miRNAs, molecules with high regulatory and biomarker properties.

Although detected in PBMC, hsa-miR-23c is highly expressed in the brain and target MS relevant genes such as, HLA (A, B, C), transferrin receptor, Nrf2, recently proposed to play important role in neurodegeneration.

Acknowledgments

This research was supported by the Science Fund of the Republic of Serbia, #GRANT No. 7753406, Identification and functional characterization of extracellular and intracellular genetic regulators of ferroptosis related processes in multiple sclerosis – FerroReg, and by the Ministry of Science, Technological Development and Innovation of the Republic of Serbia. Grant No. 451-03-47/2023-01/200017.

Science Fund of the Republic of Serbia